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Abstract

This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation

and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes

(between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S,

2P and PþS wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the

phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less

than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of

the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder

movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement,

resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex

is found to undergo intense stretching and eventual bifurcation into two separate vortices. The PþS mode occurs when

the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are

found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over

the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found

to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at

Keulegan–Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected

downstream by the uniform flow as the vortex pairs in the 2P mode.

& 2010 Elsevier Ltd. All rights reserved.

Keywords: Oscillating cylinder; Vortices; PIV
1. Introduction

When a circular cylinder moves in a fluid, large-scale vortices are formed from the roll-up of the separation shear

layers. In a uniform cross-flow, a street of vortices of alternating senses of rotation is shed from the cylinder. For a

circular cylinder undergoing an oscillating motion in an otherwise quiescent fluid, vortices are formed and at sufficiently

long oscillation amplitudes, the vortices are shed from the cylinder. Previous studies have established a number of

vortex patterns around the cylinder at different regimes depending primarily on the Keulegan–Carpenter (KC) number.

The KC number is defined by KC=UmT/D or KC=2pA/D, where D is the cylinder diameter, A the oscillation
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amplitude, T the period of oscillation and Um the maximum velocity in the oscillation [e.g., Bishop and Hassan (1964),

Williamson (1985), Lam and Dai (2002)]. The Reynolds number for this flow is usually defined as Rem=UmD/n, n being
kinematic viscosity of the fluid. At lower Reynolds numbers, viscous effect is important and the flow is affected

additionally by the Stokes number which is defined by b=D2/nT (Tatsuno and Bearman, 1990; Lam and Dai, 2002). In

fact, Rem is the product of KC and b.
In the case of a circular cylinder made to oscillate laterally in a uniform cross-flow, Williamson and Roshko (1988)

also found a number of vortex patterns which depend not only on the amplitude ratio A/D (or equivalently, KC) but

also on the wavelength ratio l/D. The wavelength l is a measure of the displacement covered by the cylinder relative to

the cross-flow during a cycle of cylinder oscillation. It is given by the product of T and the ambient flow velocity U0

(l=U0T). Notably, a ‘‘mode jump’’ in the wake pattern was observed when the period of cylinder oscillation changes

across the ‘‘natural’’ vortex shedding period of a cylinder in uniform cross-flow (equivalent to l/DE5).

Most investigations on flow past a circular cylinder oscillating transversely to a flow stream refer to the mode map

of Williamson and Roshko (1988) in which the 2S, 2P, and PþS vortex modes are expected in flow regimes on the

(A/D, l/D) plane. The mode map is based on observations from flow visualizations and, recently, Morse and

Williamson (2009) reported another flow regime map based on fluid force measurements on a very fine grid of

(A/D, l/D). It was found that the transitions between regimes can occur sharply and there is a remarkable agreement

between the shapes of the regimes from force measurements and those from flow visualizations. A new regime was

found and this 2PO mode is quite similar to the 2P mode except that the second vortex of each pair is much weaker than

the first vortex. The study also reported phase-averaged velocity and vorticity data from particle-image velocimetry

(PIV) measurements for the different vortex modes.

The motivation of the present work arises from our investigation of vortex patterns around a circular cylinder

oscillating in an otherwise quiescent fluid (Lam and Dai, 2002). We have subsequently carried out time-resolved PIV

measurements at KC48 to understand the mechanisms of vortex formation and shedding for different vortex patterns.

At KC between 12 and 16, the dominant vortex mode is the lateral vortex street pattern described in Williamson (1985)

and Obasaju et al. (1988), but we also observed a sub-mode in which the vortex street on one side of the line of cylinder

movement is inclined at about 451 to the line (Lam et al., 2010). This bears some resemblance to the PþS mode of a

cylinder oscillating in a cross-flow in which the vortex pair is also convected away from the cylinder at about 451.

Therefore, we attempt to seek a connection between the vortex formation mechanisms in the two flow cases. In other

words, we are interested in how the vortex formation processes of an oscillating cylinder are affected by the presence of

an ambient cross-flow of relatively slow velocity, in which U0 is of the order of Um. Some preliminary results were

reported in Liu et al. (2008) and phase-averaged PIV measurements were presented for the 2S, 2P and PþS modes.

Those efforts appear to be concurrent with those of Morse and Williamson (2009) who measured the PþS mode for the

first time with PIV. In this paper, we present the complete set of PIV measurement data and vortex dynamics

subsequent to the preliminary work of Liu et al. (2008).

Many highly cited discovery works on flow around an oscillating cylinder [e.g., Williamson (1985)] and flow over a

cylinder oscillating in a uniform cross-flow [e.g., Williamson and Roshko (1988), Ongoren and Rockwell (1988a, b)]

were based on flow visualizations. At present, advances in PIV technology, in particular time-resolved PIV made

possible by high-speed cameras, have provided us with the necessary temporal and spatial resolutions for the study of

vortex shedding flows. The information of instantaneous or phase-averaged velocity fields enables more quantitative

understanding of the vortex dynamics than flow visualization. For instance, Jeon and Gharib (2004) have reported PIV

vorticity contours for the 2S and 2P modes of a circular cylinder oscillating laterally to a cross-flow. The vortex

formation time was proposed in that study to explain the transition between the two modes. This paper aims

to investigate in details the vortex formation processes in the different vortex modes of an oscillating cylinder in a

cross-flow through phase-averaged PIV measurements.

In this study, we aim at a highly two-dimensional flow geometry in the experimental set-up and mainly focus on the

coherent vortex patterns on the two-dimensional plane. Fine flow structures in the span-wise direction of the cylinder

and three-dimensional flow features are always present at the present Reynolds number range but their investigation is

outside the scope of this paper. The effect of the Stokes number is also not studied. It is believed that in the presence of

an ambient cross-flow the viscous effect has a reduced significance on the oscillating cylinder.
2. Experimental techniques

Experiments were carried out in a water tank facility measuring 1.8m long and 1.2m wide and with water filled to

0.5m depth. At mid-length of the tank, a transparent circular cylinder of D=15mm was mounted vertically on a



Table 1

Flow parameters of experiments. D=15mm, U0=17mm/s, Re=U0D/n=284.

A/D l/D KC U0/Um T (s) Rem=UmD/n

‘‘2S’’ 0.28 5.52 1.76 3.14 4.90 90

‘‘2P’’ 0.75 5.52 4.71 1.17 4.90 241

‘‘PþS’’ 1.42 3.10 8.92 0.35 2.75 814
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traversing table which was placed above the tank. The clearance of the cylinder end from the bottom of the tank was

about 1mm and the aspect ratio of the cylinder was larger than 33. The table and the cylinder were given forced

sinusoidal oscillations in the lateral direction at given amplitudes and periods with a motor-crank mechanism and a

stepper motor. A uniform flow stream at U0=17mm/s was produced along the tank by circulating water from one end

to the other with a pump. A contraction section was installed to improve the uniformity and smoothness of the flow

stream. This has been checked with PIV on the measurement plane. In the region downstream of the cylinder up to

x/D=8 and within y/D=74, 90% of the flow vectors had U within 17.070.5mm/s and V within 70.2mm/s. The

axial turbulence intensity was about 0.05. The coordinates (x, y) are downstream and lateral to the centre of the cylinder

in its neutral position and (U, V) are the corresponding components of the velocity vectors.

Time-resolved PIV measurements were made at three flow cases corresponding to three points on the (A/D, l/D)

plane. Their values and other flow parameters are listed in Table 1. The parameters include KC, Reynolds number,

Rem=UmD/n, and the ratio of velocities, U0/Um. It is worth noting that the velocity ratio can relate the wavelength

ratio and KC through l/D=KC�U0/Um. It should also be noted that in all cases, the same ambient flow velocity at

U0=17mm/s was used. The cross-flow Reynolds number thus had a constant value, Re=U0D/n=284. The three flow

cases were decided based on the mode map of Williamson and Roshko (1988) in which the 2S, 2P and PþS modes are

expected. However, according to the latest mode map of Morse and Williamson (2009), the second flow case falls into

the regime of the 2PO mode.

The time-resolved PIV system comprised of three parts, namely, a 6-W Argon-ion laser with light sheet optics, a high-

speed CCD camera (model PCO 1200hs) with 1280� 1024 pixel resolution, and a PIV analysis software (Dantec

Dynamic Studio). Neutrally buoyant polyamid particles of 50mm nominal diameter were used to seed the water. The

laser sheet illuminated a horizontal plane of the flow at mid-depth and the flow images were taken from the camera

viewing from below the transparent bottom of the tank. The camera was set at a speed of 100 image/s to capture a time

sequence of particle images. Particle images recorded on two consecutive images were analysed for an instantaneous

PIV snapshot. The analysis was based on the spatial cross-correlation algorithm of Willert and Gharib (1991) but with

adaptive and multi-pass interrogation windows. In the final iteration, PIV vectors are obtained on interrogation areas

of size 32 pixels� 32 pixels and with 50% overlap. Thus, the two-dimensional velocity field at each time instant

consisted of 79� 63 vectors of U and V. For each flow case, PIV snapshots were taken for 30 cycles of lateral oscillation

of the cylinder and there were 490 or 275 snapshots in each cycle. The PIV system thus provided sufficiently fine

temporal resolution for the investigation of vortex formation and evolution processes. From the velocity vectors, span-

wise vorticity, z, was computed from the fluid circulation (Lam and Leung, 2005). Experimental uncertainties in

determining the velocities and span-wise vorticity were estimated to be 5% and 7%, respectively.

The phase-lock averaging technique has proven to be a useful tool to investigate quasi-periodic flows such as vortex

shedding flow; see, for example, Reynolds and Hussain (1972), Cantwell and Coles (1983), and Govardhan and

Williamson (2001). Our PIV experiments produced velocity snapshots at very fine resolution in order of hundreds of

images per oscillation cycle. To make full use of the data, a modified phase-averaging procedure was adopted. For each

selected phase of the cylinder oscillation cycle, an interval Dt was chosen and several sequential velocity snapshots

within this interval were selected to represent the pattern at this phase. All PIV snapshots at this phase were then

averaged over 30 cycles of cylinder oscillation to obtain the phase-averaged velocity field at the selected phase, from

which the coherent vorticity field at this phase was also computed. The fine temporal resolution of our PIV data enabled

us to carry out phase-lock averaging at many successive phases of fine intervals in a typical cycle of cylinder oscillation.
3. Results and discussion

Compared with the case of an oscillating cylinder in an otherwise quiescent fluid, vortex formation in the wake of the

cylinder in the presence of a uniform cross-flow is highly repetitive and regular. In our three flow cases, vortex
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formation was found to be highly synchronized with the cylinder motion. As mentioned previously, we chose the three

flow cases according to the mode map of Williamson and Roshko (1988) to investigate the 2S, 2P and PþS modes. We

have tried to vary mainly the oscillation amplitudes with a small value of l as listed in Table 1. Essentially, the 2S mode

has two single vortices shed per cycle of cylinder oscillation, and in the 2P mode two pairs of vortices are formed during

a cycle. The PþS mode is an asymmetric mode in which one pair of vortices and one single vortex are formed in one

cycle. These modes of vortex pattern can last for at least hundreds of cylinder cycles. However, the latest mode map of

Morse and Williamson (2009) suggests that our second flow case falls into the regime of the newly discovered 2PO

mode. For illustration, Fig. 1 shows the coherent vorticity fields of the three modes when the cylinder is at one extreme

position of its oscillation. The vorticity is computed from the phase-averaged velocity field at that phase and shown in

the nondimensional form of zD/U0.
3.1. Inclined vortex street and PþS mode

We first explore the similarities between the PþS mode and the inclined vortex street of a circular cylinder oscillating

in an otherwise quiescent fluid. Fig. 2 shows some instantaneous PIV snapshots for the latter case at KC=16. This case

corresponds to A/D=2.55 and l/D=0. Detailed discussion of the vortex pattern is recently reported in Lam et al.

(2010) in which a fuller set of PIV results are presented. In the absence of a uniform cross-flow, the vortex pattern is

found to be less regular and periodic, and phase-locked averaging is not carried out on the PIV data. However, the key

stages of vortex formation and development can be observed in Fig. 2. While all vortices are convected to the vortex

street located to the right of the line of cylinder movement in the figure, each vortex is actually first formed from the

roll-up of the shear layer on the left side of the cylinder at the start of every cylinder stroke (Fig. 2(b)). During

the stroke, the vortex grows with the feed of vorticity from the shear layer. Near the middle of the stroke, a vortex of the

opposite sense of rotation is shed from the right side of the cylinder (Fig. 2(c, d)). Connected with this shedding, the

vortex on the left shear layer moves rightwards around the leeward side of the cylinder surface. The rightward migration

of the vortex continues due to the presence of a rightwards-flowing biased flow stream. When the cylinder traverses its

next stroke, the vortex is eventually brought to the right cylinder surface and vorticity is fed to it from the right-side

shear layer instead (e.g., Fig. 2(b)). The vortex grows to maturity and is subsequently shed into the wake to the right of

the cylinder near the middle of the stroke. Fig. 2(d) suggests that shedding of the vortex seems to be triggered by an

interaction with the preceding vortex of the opposite sense of rotation. When the cylinder travels past the latter vortex,

the vortex developing on the right side of the cylinder undergoes some stretching (Fig. 2(c)). The main and trailing

portion of the vortex is induced to be shed and pairs up with the preceding vortex while a smaller part remains attached

to the advancing cylinder (Fig. 2(e)).

Jeon and Gharib (2004) suggested the use of an equivalent travelling distance for the formation time of a vortex for

shedding from a circular cylinder. The vortex distance was defined as the relative distance that the flow passes over the

cylinder during the formation time. It was suggested that around a time of 4.8D, a vortex grows to reach a critical

circulation and shedding occurs. For an oscillating cylinder, the vortex street pattern occurs at 8oKCo16. As shown in

Fig. 2, when a typical vortex develops from initial roll-up to shedding, the cylinder moves through 11
2
cylinder strokes or

3A approximately. This distance is between 3.8D and 7.6D for 8oKCo16. As higher KC, the cylinder strokes are

longer and more than one pair of vortices are formed for one cylinder oscillation cycle.

In the presence of a uniform cross-flow, the relative distance which the fluid passes over the oscillating cylinder is

increased from the no flow case. Fig. 3 shows the phase-averaged vorticity fields at 16 successive phases of a cylinder

oscillation cycle for our PþS mode at A/D=1.42 and l/D=3.10. It is noted that the pattern of the vortex pair in the

PþS mode bears close resemblance to the inclined vortex street in Fig. 2. To study the combined action of the lateral

cylinder oscillation and the uniform flow stream, we also plot in Fig. 3 the phase-averaged velocity vectors relative to

the moving cylinder. It can be observed when the cylinder moves through its neutral position, fluid flows past it almost

along the lateral direction. This is due to the low velocity of the uniform flow velocity as compared to the cylinder

oscillating velocity, U0/Um=0.35.

In Fig. 3, when the cylinder moves downwards from its uppermost position, it drags along with it the

counterclockwise vortex of positive vorticity on the downstream side (or the right side of the cylinder as shown in

Fig. 3). This vortex, denoted by P1, is formed during the previous upward stroke. The relative velocity vectors in

Fig. 3(d–f) show that fluid passes the cylinder in an almost lateral direction during the middle of the cylinder stroke. The

flow physics is very similar to that in Fig. 2 for U0=0. There is a separation shear layer developed on the upstream side

(left side) of the cylinder. The roll-up of the shear layer gives rise to a clockwise vortex N1 (of negative vorticity) which

can be observed attached to the upper left side of the cylinder in Fig. 3(e–g). Similar to the case of U0=0 in Fig. 2,

vortex N1 has migrated to the right side of the cylinder as the cylinder moves to its lowermost position. While this



Fig. 1. Phase-averaged vorticity field when cylinder reaches its extreme position for our three flow cases of vortex modes: (a) 2S; (b) 2P;

(c) PþS. Vorticity contours at zD/U0={70.35, 70.7, 71.05, y}.
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vortex migration is brought about by the biased flow stream in Fig. 2, it is now facilitated by the uniform flow stream in

Fig. 3. The migration of vortex N1 to the downstream side of the cylinder in Fig. 3(h) also cuts off the mature vortex P1

from its shear layer and thus triggers its shedding from the cylinder.

Now the cylinder reverses its movement and traverses its upward stroke from Fig. 3(i) onwards. Vortex N1 is brought

across the returning cylinder and becomes attached to the downstream side of the cylinder. It continues to grow with



Fig. 2. Instantaneous velocity vectors and vorticity fields at selected phases of circular cylinder oscillating in otherwise quiescent water.

Inclined vortex street pattern at KC=16. Vorticity contours at zD/Um={70.8, 71.6, 72.4, y}. Phases denoted by lateral

displacements of cylinder centre, yc: (a) yc/A=�1.0; (b) yc/A=�0.7; (c) yc/A=�0.0; (d) yc/A=0.4; (e) yc/A=0.7; (f) yc/A=1.0.
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Fig. 3. Phase-averaged velocity vectors and vorticity fields at 16 successive phases of cylinder movement in PþS mode. Vorticity

contours at zD/Um= {70.05,70.1,70.15,70.2,y}. Velocity vectors relative to moving cylinder: (a) yc/A=1.00; (b) yc/A=0.92; (c)

yc/A=0.71; (d) yc/A=0.38; (e) yc/A=0.00; (f) yc/A=�0.38; (g) yc/A=�0.71; (h) yc/A=�0.92; (i) yc/A=�1.00; (j) yc/A=�0.92;

(k) yc/A=�0.71; (l) yc/A=�0.38; (m) yc/A=�0.00; (n) yc/A=0.38; (o) yc/A=0.71; (p) yc/A=0.92.
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Fig. 4. Mean flow vectors in PþS mode, with mean vorticity contours of zD/Um.
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vorticity supplied by the shear layer on this right side of the cylinder. When the cylinder passes its neutral position in

Fig. 3(l, m), vortex N1 is stretched by the downstream vortex P1. This mechanism is the same as that in Fig. 2(c, d) and

leads to the detachment of the larger and trailing part of N1 from the cylinder as a shed vortex. The shedding process is

completed in Fig. 3(n) and the leading part of N1 remains attached to the departing cylinder and we name this part as S1.

During the upward stroke of the cylinder, a new counterclockwise vortex is rolled up from the upstream side of the

cylinder. In Fig. 3(n–p), this vortex P2 is migrated to the downstream side of the cylinder which is approaching its

uppermost position. As the cylinder moves downwards in the next stroke in Fig. 3(b), vortex P2 starts to be brought

across the returning cylinder while the single vortex S1 is shed behind. Therefore the PþS mode is completed for one

cylinder oscillation cycle. In the case of U0=0, the single vortex is not observed in Fig. 2. This is probably because the

remaining part of the vorticity region (after the shedding of vortex N1) cannot be convected away from the cylinder in

the absence of a uniform flow stream in Fig. 2(e). When the cylinder reverses its movement, it impinges onto the

remaining vorticity region and leads to the disintegration of the latter.

While we observe great similarities between the formation mechanism of the PþS mode in Fig. 3 and that of the

inclined vortex street in Fig. 2, the cylinder in the former case undergoes much smaller amplitudes of lateral oscillation

at A/D=1.42, or equivalently KC=8.92 only. The formation of a vortex in the vortex pair occurs for about 11
2
cylinder

strokes and this is 4.3D in Fig. 3, while the distance is 7.6D in Fig. 2. However, we suggest that the vortex formation

distance should be taken as the distance which the cylinder moves relative to the flow during the instant from the initial

formation of a vortex to its shedding. In the presence of a uniform cross-flow, the relative flow velocity to the cylinder is

always higher than in the case of U0=0. Thus, the actual vortex formation distance for vortex N1 or P1 in Fig. 3 is

longer than 4.3D. We believe that this adjustment should also be considered in the use of the wavelength ratio l/D.

The PþS mode is an asymmetric mode and this is particularly so in our case of a low value of U0/Um=0.35. Fig. 4

shows the time-averaged mean velocity field in the wake of the cylinder. We can observe that the mean velocity field is

also asymmetric and there exists a jet-like flow stream inclined to one side from the direction of the uniform flow

stream. This flow stream is coincident with the trajectory of the vortex pair and bears some similarities to the biased

secondary flow stream observed for the vortex street pattern of a cylinder oscillating in an otherwise quiescent flow

(Williamson, 1985; Lam et al., 2010). The mean vorticity field computed from the velocity vectors is also shown in the

figure.

The trajectories of the vortices in Fig. 3 and their peak vorticity levels are found using the techniques described in

Lam (2009). The PþS mode is clearly observed in the vortex trajectories in Fig. 5(a). The convection of the vortex pair

in the PþS mode follows a path which is inclined at about 301 to the direction of the uniform flow while the single



Fig. 5. Convection paths and peak vorticity levels of vortices in PþS mode: (a) locations of peak vorticity; (b) magnitudes of peak

vorticity. Symbols: þ, counterclockwise vortex of positive vorticity; J, clockwise vortex of negative vorticity.
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vortex is convected along a less oblique path. Fig. 5(b) compares the magnitudes of the peak vorticity levels of the three

vortices. The vorticity levels are shown in the nondimensional form of zD/Um and the normalization using Um is for

comparison with other vortex modes. These measures of vortex strengths drop with downstream distance but it is

evident that the strengths of the clockwise vortex N1 in the vortex pair are the same or even slightly higher than that of

its counterclockwise partner P1. This is a bit surprising because the single vortex is also rotating clockwise, although its

peak levels of negative vorticity are much lower than either vortex of the vortex pair. Although Fig. 5 only compares the

peak vorticity levels, it is likely that there is a net excess of negative vorticity in the wake. We have also tried to integrate

the mean vorticity field in Fig. 4 in the cylinder wake. A small negative value is indeed obtained for the area-averaged

mean vorticity at zD/UmE�0.0005, although this small magnitude might be affected by experimental uncertainties. In

the studies of a lift-generating body including an inclined flat plate at high incidence and a rotating circular cylinder,

Lam and Leung (2005) and Lam (2009) argued that a mean lift is connected with a net excess of fluid circulation in the

wake. If we accept this argument, the circular cylinder in the PþS mode would be under a mean fluid force in the lateral

direction. We have not made force measurements but we find that there appears a small mean component in the lift

measurement data of Morse and Williamson (2009) for the asymmetric PþS mode.
3.2. 2S and 2P modes

To study the 2S and 2P modes while keeping the uniform cross-flow slow, we choose our flow cases at a low value of

l/D=5.52. At a small amplitude of lateral cylinder oscillations at A/D=0.28 (KC=1.76), we observe the 2S mode,



Fig. 6. Phase-averaged velocity vectors and vorticity fields at selected phases of cylinder movement in 2S mode. Velocity vectors

relative to moving cylinder. Vorticity contours at zD/Um={70.1, 70.2, 70.3, y}: (a) yc/A=1.0; (b) yc/A=0.0; (c) yc/A=�1.0; (d)

yc/A=�0.0.
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while as the amplitude increases to A/D=0.75 (KC=4.71), we expect the 2P mode from the mode map of Williamson

and Roshko (1988). Figs. 6 and 7 shows the phase-averaged PIV results of these two flow cases, respectively. It is

evident that the vortex formation process undergoes a mode transition when the amplitude of cylinder oscillations

changes between the low and high values.

The 2S mode in Fig. 6 is highly symmetrical and thus we only show the phase-averaged flow at a few phases of

cylinder oscillation. In every cylinder oscillation cycle, two vortices of opposite signs of rotation are shed alternatively

from the cylinder, resulting in a nice vortex street in the wake. Owing to the small amplitudes of cylinder oscillation, the

cylinder always moves with slow lateral velocities bounded by Umo0.31U0 (U0/Um=3.14). Even when the cylinder

travels past its neutral position with its maximum lateral velocity Um (e.g., in Fig. 6(b)), there is no significant effect on

the relative flow approaching directions to the cylinder (that has been observed in the PþS mode in Fig. 3). However,

we can observe in Fig. 6(b, d) that as the cylinder moves from one extreme position towards the neutral position, it

seems to induce the region of concentrated vorticity on the frontal side of its movement to migrate towards the central

line of the wake. This phenomenon is illustrated by the trajectories of vortex centres in Fig. 8. The migration of the

locations of peak positive or negative vorticity towards the wake centerline occurs within x/Do1.5. Farther

downstream, the 2S vortices of opposite signs of rotation both lie almost on the wake centerline. This aspect of the

vortex street pattern differs from that of a stationary cylinder in uniform cross-flow in which the alternating vortices

were found to convect downstream along parallel paths at y/DE70.5 (Cantwell and Coles, 1983; Lam, 2009). The

contra-rotating vortices of the 2S mode are found to possess same strengths at corresponding downstream locations and

the results are not shown for brevity.

In our opinion, the vortex pattern would remain in the symmetric and relatively simple 2S mode, provided that the

action of the relative flow velocities caused by the lateral movement of the cylinder is small compared with that of the

uniform cross-flow and that the period of the oscillation does not exceed the natural vortex formation distance of 4.8D



Fig. 7. Phase-averaged velocity vectors and vorticity fields at selected phases of cylinder movement in 2P mode. Velocity vectors

relative to moving cylinder. Vorticity contours at zD/Um={70.05, 70.1, 70.2, 70.3, y}: (a) yc/A=1.0; (b) yc/A=0.0; (c) yc/

A=�1.0; (d) yc/A=�0.0.

Fig. 8. Vortex convection paths as shown locations of peak vorticity levels in 2S mode: þ, counterclockwise vortex of positive

vorticity; J, clockwise vortex of negative vorticity.
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by a factor of about two. According to the mode map of Williamson and Roshko (1988), the 2S mode can occur only

when the circular cylinder oscillates with low amplitudes and at frequencies close to the natural shedding frequency of a

stationary cylinder. Our conjecture is consistent with the region of the 2S mode in the mode map.

We now return to Fig. 7 where we expect to observe the 2P mode. The amplitudes of cylinder oscillation are almost

three times those of the 2S mode in Fig. 6. This leads to a higher value of Um at U0/Um=1.17 and thus we can observe

from the relative velocity vectors in Fig. 7(b, d) that when the cylinder travels past its neutral position with lateral



Fig. 9. Evolution of vortex patterns at successive phases of cylinder movement in 2P mode: phase-averaged vorticity fields and velocity

vectors as appeared to observer travelling with vortices convecting downstream at 0.8U0. Vorticity contours at zD/Um={70.025,

70.05, 70.1, 70.15, y}: (a) yc/A=1.00; (b) yc/A=0.71; (c) yc/A=0.00; (d) yc/A=�0.38; (e) yc/A=�0.71; (f) yc/A=�0.92;

(g) yc/A=�1.00; (h) yc/A=�0.92; (i) yc/A=�0.71; (j) yc/A=�0.00; (k) yc/A=0.38; (l) yc/A=0.92.
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velocity Um, fluid approaches the cylinder at a noticeably inclined direction to that of the uniform flow stream. The two

regions of vorticity concentration at either side of the cylinder are observed to sway sideways to align with that inclined

direction. Of course, this swaying effect can also be explained by the lateral movement of the cylinder relative to the

shear-layer vorticity regions which are already some distances from the moving cylinder.

In Fig. 9, detail stages of vortex development in our 2P mode are shown by the phase-averaged flow fields at some

selected phases of the cylinder oscillation cycle. The uniform flow stream past the cylinder leads to regions of

concentrated vorticity rolled up from the shear layers but the development of these shear-layer vortices is affected by the

large lateral movement of the cylinder during a cylinder stroke. Thus, when the cylinder reaches its extreme position, the

region of concentrated vorticity is significantly elongated and lying at an inclined direction to the uniform flow stream

as compared to a stationary cylinder or a cylinder oscillating at smaller amplitudes in the 2S mode. Similar to the 2S

mode in Fig. 6, it is observed in Fig. 9(a–c) and (g–i) that as the cylinder moves from one extreme position towards its

neutral position, it brings along with its movement the shear layer on its trailing side and the associated elongated

region of concentrated vorticity towards the newly rolled up vortex on the frontal side of the cylinder. This further

stretches the elongated region of concentrated vorticity. In Fig. 9(j), when the cylinder moves past its neutral position in

the upward stroke, this stretching triggers the separation of the downstream part of the elongated region of

concentrated vorticity to become a shed vortex. This shed vortex, which we denote by P2, is located at y/DE0.8 which

corresponds very close to the extreme lateral displacement of the cylinder at A/D=0.75. When the cylinder moves

farther upwards (Fig. 9(k, l)), interaction of the clockwise vortex N3 from the upper shear layer with the trailing part of

the elongated region of positive vorticity leads to the shedding of the later as another counterclockwise vortex P3 which

is located below the wake centerline. Subsequent developments of these vortices P2, P3 and N3 from Fig. 9(l) onwards

are followed by vortices P0, P1 and N1, respectively, in Fig. 9(a).

The phase-averaged PIV results of Morse and Williamson (2009) also show evidence of breaking up of the elongated

region of concentrated vorticity into two successive vortices of the same sense of rotation in the 2P mode. However,

when the cylinder traverses its downward stroke in Fig. 9(a–g), the region of concentrated negative vorticity, N1,

does not show very clear breaking. When we compare Fig. 9(c) with (j), the region N1 is stretched to a lesser extent

when the cylinder moves downwards past its neutral position than the regions of P2 and P3 when the cylinder moves

upwards. This may be because in Fig. 9(c), the counterclockwise vortex P2 does not penetrate as deeply into the

opposite region of concentrated vorticity as the vortex N3 does in Fig. 9(j). Nevertheless in Fig. 9(c), the vorticity

contours within N1 still exhibit a shallow valley of low levels near the middle of the elongated region. When the cylinder

continues to move downwards in Fig. 9(d–g), there are evidences of some tendency of N1 to split into two regions,

which we denote as N1 and N2 in Fig. 9(f), but the later region N2 is not well-defined. Furthermore, the location of

the peak vorticity in N1 always remains just below the wake centerline and does not extend much farther laterally as

vortex P2.

Over one cylinder oscillation cycle in Fig. 9, two counterclockwise vortices, such as P1 and P2, are shed, as well as a

clockwise vortex, N1, which may be counted as two not fully separated vortices, N1 and N2. In Fig. 9, we also plot the

flow vectors as appeared to an observer travelling with the vortices. These vectors are obtained by subtracting 0.8U0

from the velocity vectors in the stationary laboratory frame, 0.8U0 being the assumed convection speed of the vortices

(Cantwell and Coles, 1983). It is then evident, for instance, in Fig. 9(f), that P1 and N1 form a vortex pair in the lower

side of the wake and fluid is induced to flow between them in the outward direction. The following vortex pair on the

lower side of the wake consists of P3 and N3 (Fig. 9(j)). On the upper side of the wake, we may say that P2 and the not

well-defined N2 form a vortex pair in Fig. 9(h) and there is fluid induced to flow between them. In Fig. 9(a), we can

observe the preceding vortex pair of P0 and N0.

Fig. 10 shows the locations and magnitudes of peak vorticity levels in Fig. 9. The counterclockwise vortices

(of positive vorticity) are clearly centred at locations of large lateral distances on either side of the wake centerline. The

main clockwise vortex has its centre located just below the wake centerline. At some locations, we may identify

separated peaks due to the poorly-defined clockwise vortices and their centres lie in similar lateral locations as the

counterclockwise vortex on the upper side of the wake. The magnitudes of peak vorticity levels in the main clockwise

vortex are always higher than those in its counterclockwise vortex partner on the lower side of the wake. The

counterclockwise vortex on the upper side of the wake possesses slightly higher magnitudes than the main clockwise

vortex.

According to the latest mode map of Morse and Williamson (2009), this flow case of our experiments falls close to the

regime boundary of the 2S mode and inside the regime of the newly discovered 2PO mode. However, the vortex pattern

is different from the description of the 2PO mode in Morse and Williamson (2009). We tend to describe this pattern as a

young 2P mode in which the vortex of one sense of rotation cannot fully bifurcate into two vortices. This may be

because the present value of A/D is just higher than that of the 2S mode and full transition into the 2P mode might

require slightly higher cylinder oscillation amplitude.



Fig. 10. Convection paths and peak vorticity levels of vortices in 2P mode: (a) locations of peak vorticity; (b) magnitudes of peak

vorticity. Symbols: þ, counterclockwise vortex of positive vorticity centred at y40; *, counterclockwise vortex centred at yo0; K,

main clockwise vortex of negative vorticity centred at yo0; J, clockwise vortex centred at y40.

K.M. Lam et al. / Journal of Fluids and Structures 26 (2010) 703–721716
The incomplete bifurcation of the counterclockwise vortex is revealed from the phase-averaged flow patterns. We

further investigate this feature in the instantaneous flow patterns of individual cylinder cycles. The instantaneous PIV

flow fields in almost all the 30 cylinder cycles show the young 2P mode such as the example shown in Fig. 11(a). In 4

cycles, however, we can observe some degree of bifurcation of the elongated region of negative vorticity which leads to

two counterclockwise vortices of better identities of separation. One example is shown in Fig. 11(b). Nevertheless, these

vortices are never located at laterally distances as far as the clockwise vortices, as would be the case of a mature

2P mode.

Our earlier result in Fig. 3 suggests that in the PþS mode, the lateral oscillations of the cylinder govern the vortex

formation mechanism more significantly than the uniform flow stream. In this section, it appears that the main

mechanism for vortex formation in the 2S and 2P modes comes from the uniform cross-flow. Vortices are formed from

the roll-up of the separation shear layers but the subsequent development is affected by the amplitudes of the lateral

cylinder oscillations. When we use the concept of vortex formation distance of Jeon and Gharib (2004), the

combination of U0 and Um should be used instead of just l=U0T. If you take a combined velocity of ðU2
0 þU2

mÞ
1=2 in

our two flow cases, the relative distance covered by the cylinder in one oscillation cycle would be 5.8D and 7.3D,

respectively. These distances are, respectively, about 1.2 and 1.5 times the suggested vortex formation distance of 4.8D.

This may provide a reason for the formation of one vortex of a given sense of rotation per cycle in the former 2S mode.

In the latter flow case, the 1.5 times the natural vortex formation distance may be responsible for the shedding of two

well-separated vortices of one sense of rotation and two still-connected vortices of the other sense in one cylinder

oscillation cycle. If the cylinder oscillation amplitudes are larger, the ratio would become greater than 1.5 times and the

well-established 2P mode would occur when the flow case moves well into the corresponding regime of the mode map.
3.3. Coherent and random vortex dynamics

In the preceding sections, we argue that the formation of vortex pattern is governed by the relative actions of the

uniform flow stream and the lateral oscillations of the cylinder. In the 2S and 2P modes, the cylinder oscillates with low

lateral velocities as compared to U0. The vortex formation mechanism is mainly due to shear-layer separation of the



Fig. 11. Examples of instantaneous vortex patterns in 2P mode, at phase while cylinder moving downwards through neutral position.

Vorticity contours at zD/Um={70.05, 70.1, 70.2, 70.3, y}: (a) young 2P mode; (b) more mature 2P mode.
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uniform flow and the cylinder motion acts as a perturbation to the wake flow, thus regulating or triggering the shedding

of vortices from the cylinder (Ongoren and Rockwell, 1988a, b; Jeon and Gharib, 2001). At large cylinder oscillation

amplitudes, that is fast Um, vortex formation in the PþS mode is governed by the cylinder motion instead, and the

uniform flow acts to convect the vortices downstream.

The synchronization of vortex pattern with cylinder motion can be investigated through the examination of the

coherent and random components of the vortex dynamics using the phase-averaging technique (Reynolds and Hussain,

1972; Cantwell and Coles, 1983; Govardhan and Williamson, 2001). We adopt the triple decomposition method in

which a flow quantity, s(t), is decomposed into a time-averaged mean component, s, a coherent and periodic

component, s̃, and a random turbulent component, s0. The phase-locked averaging technique removes the last

component and yields the mean and coherent components; /sS¼/s þ s̃þs0S¼ s þ s̃. For brevity, we present here

only the Reynolds normal stress due to lateral velocity component to show the vortex dynamics (Cantwell and Coles,

1983; Lam, 1996; Lam and Leung, 2005). Fig. 12 shows the coherent and random components of this stress for our

three flow cases at the phase where the cylinder reaches its uppermost position. The stress components have been

normalized using U0
2 and are shown as ṽ ṽ=U2

0 and /v0v0S=U2
0 . When compared with Fig. 1, large values of coherent

stress are produced at regions between successive vortices where fluid is induced to flow between them with very large

lateral velocities. On the other hand, random stress components mainly occur near the vortex cores. If we compare

Fig. 12 with the reported results for a stationary circular cylinder or bluff body in uniform cross-flow [e.g., Cantwell and

Coles (1983), Lam (1996)], it is evident that the coherent components in the present flow are of much larger magnitudes

than the random components. This implies that vortices behind our oscillating cylinder are arranged in a more regular

and periodic pattern. It is also noted in Fig. 12 that the levels of both stress components increase from the 2S mode to

the 2P mode and the PþS mode has much higher levels. This provides evidence that the levels of momentum transport

are governed not only by U0 but also by the cylinder movement as represented by Um.



Fig. 12. Reynolds stress of lateral velocity fluctuations associated with phase-averaged flow field when cylinder reaches its extreme

position for our 2S, 2P and PþS vortex modes: (a) coherent component: ṽ ṽ=U2
0 ; (b) random component: /v0v0S=U2

0 .
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Fig. 13 shows the global mean values of the Reynolds stresses in Fig. 12, that is, the values averaged over all phases of

the cylinder oscillation cycle. The high periodicity and regularity of the vortex pattern lead to a uniform and regular

convection of the vortices in the wake at successive phases of the cylinder oscillation cycle. Thus, there are uniform high

values of /ṽṽ=U2
0 along the paths of the vortices (Fig. 13(a)). In Fig. 13(b), randomness of the stress, /v0v0S=U2

0 ,

increases with more jitter as the vortex are convected downstream. The patterns of our 2S or 2P mode are similar to that

reported for a stationary cylinder in uniform cross-flow [e.g., Cantwell and Coles (1983)] but in our case, the coherent

component is much more important than the random component. There is almost no energies due to the random

component of the Reynolds stress within the first 3D downstream of the cylinder, implying that the formation of the



Fig. 13. Global mean Reynolds stress of lateral velocity fluctuations associated with vortices in our 2S, 2P and PþS vortex modes:

(a) coherent component: /ṽṽ=U2
0 ; (b) random component: /v0v0S=U2

0 .
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vortices are highly periodic. This is not the case for the PþS mode in which vortices are formed at different lateral

positions of the cylinder strokes. The sum of the two components in Fig. 13 gives the total Reynolds normal stress.
4. Conclusions

In this paper, we attempt to investigate the mechanism of vortex formation and pattern behind a cylinder given

lateral oscillations in the presence of a slow uniform flow stream. It is proposed that vortex formation can be caused
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and affected by both the flow stream (of velocity U0) and the relative flow due to the cylinder movement (which is

measured by Um, the maximum cylinder moving speed). Time-resolved PIV measurements are made for three flow cases

and the phase-locked averaging technique is used to extract the flow field and vortex dynamics at successive phases in a

cylinder oscillation cycle. By plotting the phase-averaged flow vectors relative to the moving cylinder, we are able to

explore more clearly the connection between the development of the shear-layer vortices and the cylinder movement.

In the first two flow cases, the cylinder oscillates at a frequency close to the natural vortex shedding frequency of a

stationary cylinder. It is found that the main mechanism for vortex formation is due to the uniform cross-flow which

separates from the cylinder and forms shear layers of concentrated vorticity. The lateral oscillations of the cylinder

affect the subsequent development of these shear-layer vortices and vortex shedding becomes synchronized with the

oscillation cycle. The 2S mode is thus formed at smaller amplitudes of cylinder oscillations in which the distance

covered by the cylinder, relative to the combined uniform flow and lateral flow relative to the moving cylinder, during

the formation time of one vortex is around the natural vortex formation distance of 4.8D, as suggested by Jeon and

Gharib (2004). The vortices of the 2S mode are found to convect in the wake at locations very close to the wake

centerline.

When the cylinder oscillation amplitudes become larger so that the relative distance covered by the cylinder in one

cycle is rougher more than 1.5 times the natural vortex formation distance, the 2P mode vortex pattern occurs. The

shear-layer vortex is stretched by the large lateral movement of the cylinder and bifurcates into two parts. The leading

part is shed and pairs up with a preceding vortex of the opposite sense of rotation to become one vortex pair in that side

of the wake. The trailing part of the stretched shear-layer vortex is shed at a later stage by the intrusion of the shear-

layer vortex of the opposite sense of rotation from the other side of the cylinder. The later vortex will subsequently

undergo stretching and bifurcation, leading to the next vortex pair on the other side of the wake. The 2P mode in our

second flow case is in an early form in which the bifurcation of one shear-layer vortex does not occur completely so that

two vortices are not fully separated.

Our PþS mode occurs at a low value of l/D and we find a close connection of its vortex formation mechanism with

that of a cylinder oscillating in an otherwise quiescent fluid (l/D=0). The formation mechanism of a vortex street

pattern of the later case at 8oKCo16, which is caused by the lateral oscillations of the cylinder, is found to be the key

driving action for vortex formation in the PþS mode. A vortex is rolled up from the upstream side of the cylinder and

develops during a cylinder stroke. Near the end of the stroke, it has migrated to the downstream side, partly due to the

uniform cross-flow. For the first half of the returning cylinder stroke, the vortex continues to grow by attaching to

the shear layer of the downstream side of the cylinder. Vortex shedding occurs near the middle of the stroke at which

the vortex is under a stretching action from the previously shed vortex of the opposite sense of rotation. The main part

of the shear-layer vortex is thus shed and pairs up with the previous shed vortex to form a vortex pair which is

convected downstream as an inclined vortex street. The other and smaller part remains attached to the cylinder and is

left behind and convected by the uniform flow as a single vortex when the cylinder reverses its moving direction.

In the PþS mode, the value of Um is much higher than U0, and in the middle part of a cylinder stroke the cylinder is

moving at a speed higher than U0. This explains why the vortex formation mechanism is governed by the lateral cylinder

movement while the uniform flow stream mainly acts to convect the vortex pattern downstream, thus reducing the angle

of inclination of the inclined vortex street to less than 451. We find that the vorticity levels of the vortices scale better

with Um than U0. The PþS mode is an asymmetric vortex pattern and leads to a net excess fluid circulation in the wake.

This may be associated with a non-zero value of mean fluid force on the cylinder in the lateral direction.

We also investigate the coherent and random parts of momentum transport by the vortices in the wake. It is found

that in all modes where vortex formation and development are governed by the combined action of the uniform flow

and the cylinder oscillations, the vortex pattern is found to exhibit better regularity and periodicity.
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